Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 11: 1367912, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659453

RESUMO

Chicken coccidiosis caused by Eimeria spp. can occur on almost all poultry farms, causing huge economic losses to the industry. Genetically manipulated Eimeria parasites as a vaccine vector to deliver viral antigens have been reported. In our preliminary study, transgenic E. acervulina expressing a VP2 gene (Ea-VP2) of the infectious bursal disease virus (IBDV) demonstrated partial protection against IBDV infection. To enhance immune responses, we aimed to increase the VP2 gene copy number in transgenic E. acervulina. In this study, we used a novel plasmid vector carrying a VP2 gene fused with three flag tags and a red fluorescent reporter gene (mCherry). The vector was introduced into Ea-VP2 sporozoites through nucleofection, leading to the generation of Ea-2VP2. Subsequent analysis revealed a notable escalation in the fluorescent rate, increasing from 0.11 to 95.1% following four consecutive passages facilitated by fluorescent-activated cell sorting. Verification via PCR, Western blot, and immunofluorescence confirmed the successful construction of the Ea-2VP2 population. Despite lower fecundity compared to wild-type E. acervulina, Ea-2VP2 maintained immunogenicity. Our research effectively created a transgenic E. acervulina strain transfected sequentially with two copies of the VP2 gene from IBDV. This modification resulted in an increased humoral immune response after primary immunization in chickens. Additionally, it demonstrated a degree of protection within the bursa against IBDV infection. Future studies will focus on further enhancing immune response levels.

2.
Sci Rep ; 14(1): 4851, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418588

RESUMO

Eimeria species serve as promising eukaryotic vaccine vectors. And that the location of heterologous antigens in the subcellular components of genetically modified Eimeria may determine the magnitude and type of immune responses. Therefore, our study aimed to target a heterologous fluorescent protein to the cell surface or microneme, two locations where are more effective in inducing protective immunity, of Eimeria tenella and E. acervulina sporozoites. We used an enhanced yellow fluorescent protein (EYFP) as a tagging biomarker, fusing variously with some localization or whole sequences of compartmental proteins for targeting. After acquiring stable transgenic Eimeria populations, we observed EYFP expressing in expected locations with certain strategies. That is, EYFP successfully localized to the surface when it was fused between signal peptides and mature products of surface antigen 1 (SAG1). Furthermore, EYFP was efficiently targeted to the apical end, an optimal location for secretory organelle known as the microneme, when fused to the C terminus of microneme protein 2. Unexpectedly, EYFP exhibited dominantly in the apical end with only weak expression on the surface of the transgenic sporozoites when the parasites were transfected with plasmid with EYFP fused between signal peptides and mature products of E. tenella SAG 13. These strategies worked in both E. tenella and E. acervulina, laying a solid foundation for studying E. tenella and E. acervulina-based live vaccines that can be further tailored to the inclusion of cargo immunogens from other pathogens.


Assuntos
Coccidiose , Eimeria , Parasitos , Doenças das Aves Domésticas , Animais , Coccidiose/parasitologia , Animais Geneticamente Modificados , Sinais Direcionadores de Proteínas , Esporozoítos/metabolismo , Galinhas/parasitologia
3.
Infect Immun ; 92(2): e0045623, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38179959

RESUMO

Using transgenic Eimeria spp. to deliver exogenous antigens is a viable option for developing multivalent live vaccines. Previous research revealed that the location of antigen expression in recombinant Eimeria dictates the magnitude and type of immune responses. In this study, we constructed genetically modified Eimeria acervulina that expressed VP2 protein, a protective antigen from infectious bursal disease virus (IBDV), on the surface or in the microneme of sporozoites. After vaccination, VP2-specific antibody was readily detected in specific pathogen-free chickens receiving transgenic E. acervulina parasites expressing VP2 in microneme, but animals vaccinated with which expressing VP2 on surface failed to produce detectable antibody after two times immunizations. Moreover, the bursal lesion of microneme-located VP2 transgenic E. acervulina immunized chickens was less severe compared with un-immunized animals after IBDV challenge infection. Therefore, genetically modified E. acervulina that express IBDV-derived VP2 in micronemes are effective in inducing specific antibody responses against VP2, while parasites that have VP2 expression on cell surface are not suitable. Thus, the use of Eimeria parasites as vaccine vectors needs to consider the proper targeting of exogenous immunogens. Our results have implications for the design of other vector vaccines.


Assuntos
Eimeria , Vírus da Doença Infecciosa da Bursa , Doenças das Aves Domésticas , Vacinas , Animais , Galinhas , Eimeria/genética , Vírus da Doença Infecciosa da Bursa/metabolismo , Micronema , Doenças das Aves Domésticas/prevenção & controle , Anticorpos Antivirais/metabolismo
4.
Vaccines (Basel) ; 11(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37766175

RESUMO

Many highly effective vaccines have been developed to protect dogs against disease caused by canine parvovirus, but despite this vaccine interference by maternally derived antibodies continues to cause immunisation failure. To help overcome this limitation we have developed a novel, recombinant canine parvovirus type 2c vaccine strain, based on the structural and non-structural elements of an established type 2 vaccine. This novel CPV-2c vaccine strain has unique efficacy in the field, it is able to induce sterilising immunity in naïve animals 3 days after vaccination and is able to overcome very high levels of maternally derived antibodies from 4 weeks of age-thus closing the immunity gap to canine parvovirus infection in young puppies. The vaccine strain, named 630a, has been combined with an established canine distemper virus Onderstepoort vaccine strain to produce a new bivalent vaccine (Nobivac DP PLUS), intended to immunise very young puppies in the face of high levels of maternally derived antibody. Here, we describe the onset of immunity and maternal antibody interference studies that support the unique efficacy of the strain, and present overdose studies in both dogs and cats that demonstrate the vaccine to be safe.

5.
Vaccine ; 41(1): 145-158, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36411134

RESUMO

In France during winter 2016-2017, 487 outbreaks of clade 2.3.4.4b H5N8 subtype high pathogenicity (HP) avian influenza A virus (AIV) infections were detected in poultry and captive birds. During this epizootic, HPAIV A/decoy duck/France/161105a/2016 (H5N8) was isolated and characterized in an experimental infection transmission model in conventional mule ducks. To investigate options to possibly protect such ducks against this HPAIV, three vaccines were evaluated in controlled conditions. The first experimental vaccine was derived from the hemagglutinin gene of another clade 2.3.4.4b A(H5N8) HPAIV. It was injected at three weeks of age, either alone (Vac1) or after a primer injection at day-old (Vac1 + boost). The second vaccine (Vac2) was a commercial bivalent adjuvanted vaccine containing an expressed hemagglutinin modified from a clade 2.3.2 A(H5N1) HPAIV. Vac2 was administered as a single injection at two weeks of age. The third experimental vaccine (Vac3) also incorporated a homologous 2.3.4.4b H5 HA gene and was administered as a single injection at three weeks of age. Ducks were challenged with HPAIV A/decoy duck/France/161105a/2016 (H5N8) at six weeks of age. Post-challenge virus excretion was monitored in vaccinated and control birds every 2-3 days for two weeks using real-time reverse-transcription polymerase chain reaction and serological analyses (haemagglutination inhibition test against H5N8, H5 ELISA and AIV ELISA) were performed. Vac1 abolished oropharyngeal and cloacal shedding to almost undetectable levels, whereas Vac3 abolished cloacal shedding only (while partially reducing respiratory shedding) and Vac2 only partly reduced the respiratory and intestinal excretion of the challenge virus. These results provided relevant insights in the immunogenicity of recombinant H5 vaccines in mule ducks, a rarely investigated hybrid between Pekin and Muscovy duck species that has played a critical role in the recent H5 HPAI epizootics in France.


Assuntos
Patos , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N8 , Vacinas contra Influenza , Influenza Aviária , Doenças das Aves Domésticas , Animais , Equidae , Hemaglutininas , Doenças das Aves Domésticas/prevenção & controle , Vacinas Sintéticas , Virulência
6.
NPJ Vaccines ; 6(1): 122, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671047

RESUMO

Early in the SARS-CoV-2 pandemic concerns were raised regarding infection of new animal hosts and the effect on viral epidemiology. Infection of other animals could be detrimental by causing clinical disease, allowing further mutations, and bares the risk for the establishment of a non-human reservoir. Cats were the first reported animals susceptible to natural and experimental infection with SARS-CoV-2. Given the concerns these findings raised, and the close contact between humans and cats, we aimed to develop a vaccine candidate that could reduce SARS-CoV-2 infection and in addition to prevent spread among cats. Here we report that a Replicon Particle (RP) vaccine based on Venezuelan equine encephalitis virus, known to be safe and efficacious in a variety of animal species, could induce neutralizing antibody responses in guinea pigs and cats. The design of the SARS-CoV-2 spike immunogen was critical in developing a strong neutralizing antibody response. Vaccination of cats was able to induce high neutralizing antibody responses, effective also against the SARS-CoV-2 B.1.1.7 variant. Interestingly, in contrast to control animals, the infectious virus could not be detected in oropharyngeal or nasal swabs of vaccinated cats after SARS-CoV-2 challenge. Correspondingly, the challenged control cats spread the virus to in-contact cats whereas the vaccinated cats did not transmit the virus. The results show that the RP vaccine induces protective immunity preventing SARS-CoV-2 infection and transmission. These data suggest that this RP vaccine could be a multi-species vaccine useful to prevent infection and spread to and between animals should that approach be required.

7.
Avian Pathol ; 50(1): 18-30, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33063529

RESUMO

A double construct vaccine of turkey herpesvirus (HVT) was prepared that contains the fusion (F) gene from Newcastle disease virus (NDV) and the viral protein 2 (VP2) gene from infectious bursal disease virus (IBDV). Safety of the vaccine (HVT-ND-IBD) was confirmed and efficacy was evaluated after subcutaneous (SC) vaccination at 1 day of age or the in ovo route of vaccination. Challenges were performed with velogenic NDV strains (Texas GB and Herts Weybridge 33/56), with different strains of IBDV (classical strain STC; very virulent strain CS89 and variant E strain) and with Marek's disease virus (MDV) strain RB1B. Vaccination with HVT-ND-IBD induced a high level of protection against these challenges. Vaccination with HVT is often combined with Rispens CVI988 vaccine and live ND vaccines for higher and earlier, MD and ND protection, respectively. HVT-ND-IBD vaccination in combination with these vaccines showed MD protection as early as 4 days post vaccination and ND protection as early as 2 weeks post vaccination. The long protection as seen with HVT vaccination was confirmed by demonstrating protection against NDV up to 60 weeks. Finally, to evaluate the performance of the vaccine in commercial birds with maternally-derived antibodies, two field trials were performed, using in ovo vaccination in broilers and SC vaccination in combination with Rispens CVI988 vaccine in layer-type birds. The efficacy was confirmed for all components by challenges. These results demonstrate that HVT-ND-IBD is a safe and highly efficacious vaccine for simultaneous control of ND, IBD and MD. RESEARCH HIGHLIGHTS A double construct HVT vaccine with the NDV F and the IBDV VP2 genes was prepared. The vaccine protects against three important diseases: MDV, NDV and IBDV. In ovo and sub-cutaneous vaccination was evaluated in the field in commercial chickens.


Assuntos
Infecções por Birnaviridae/veterinária , Galinhas/imunologia , Herpesvirus Galináceo 2/imunologia , Vírus da Doença Infecciosa da Bursa/imunologia , Doença de Marek/prevenção & controle , Doença de Newcastle/prevenção & controle , Vírus da Doença de Newcastle/imunologia , Doenças das Aves Domésticas/prevenção & controle , Animais , Infecções por Birnaviridae/prevenção & controle , Infecções por Birnaviridae/virologia , Feminino , Masculino , Doença de Marek/virologia , Doença de Newcastle/virologia , Doenças das Aves Domésticas/virologia , Organismos Livres de Patógenos Específicos , Vacinação/veterinária , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia
8.
Avian Pathol ; 48(1): 45-56, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30404540

RESUMO

A double recombinant strain of herpes virus of turkeys (HVT) was constructed that contains the fusion (F) gene from Newcastle disease virus (NDV) and the gD plus gI genes from infectious laryngotracheitis virus (ILTV) inserted into a non-essential region of the HVT genome. Expression of the F protein was controlled by a human cytomegalovirus promoter, whereas expression of gD plus gI was driven by an ILTV promoter. The double recombinant vaccine virus (HVT-NDV-ILT) was fully stable genetically and phenotypically following extended passage in cell culture and infection of chickens. Safety of the vaccine virus was confirmed by overdose and backpassage studies in specific-pathogen-free chickens. Chickens vaccinated with a single dose of HVT-NDV-ILT administered by the in ovo route were highly protected from challenge with the velogenic NDV (GB Texas), ILTV (LT 96-3) and Marek's disease virus (GA 5) strains (97%, 94% and 97%, respectively). Similarly, chickens vaccinated with a single dose by subcutaneous (SC) route at 1 day of age were highly protected from challenge with the same three viruses (100%, 100%, and 88%, respectively). The protection level of a single dose given by in ovo or SC route against challenge with a virulent Marek's disease virus strain demonstrates that insertion of multiple genes from two different pathogens within the HVT genome had no adverse effect on the capacity of HVT to protect against Marek's disease. These results demonstrate that HVT-NDV-ILT is a safe and efficacious vaccine for simultaneous control of NDV, ILTV and Marek's diseases.


Assuntos
Galinhas/virologia , Herpesvirus Galináceo 1/imunologia , Herpesvirus Meleagrídeo 1/imunologia , Herpesvirus Galináceo 2/imunologia , Doença de Marek/prevenção & controle , Doenças das Aves Domésticas/prevenção & controle , Animais , Doença de Marek/virologia , Doenças das Aves Domésticas/virologia , Organismos Livres de Patógenos Específicos , Perus
9.
J Gen Virol ; 89(Pt 4): 968-974, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18343838

RESUMO

Highly pathogenic avian influenza virus (HPAIV) H5N1 of Asian origin continues to circulate in poultry and wild birds, causing considerable concern for veterinary and public health in Asia, Europe and Africa. Natural transmission of HPAIV H5N1 from poultry to humans, resulting in infections associated with high mortality, and from poultry or wild birds to large felids and domestic cats has been reported. Experimental infection of cats with HPAIV H5N1 derived from a human patient resulted in lethal disease. The role of cats in the adaptation of HPAIV H5N1 to mammals and vaccination regimens for the eventual protection of cats, however, remain to be elucidated. Here, it was shown that cats can be protected against a lethal high-dose challenge infection by an inactivated, adjuvanted heterologous H5N6 avian influenza virus vaccine. The challenge HPAIV H5N1 was derived from a naturally infected cat. In non-vaccinated cats, low-dose exposure resulted in asymptomatic infections with minimal virus excretion. As diseased cats can transmit the infection to naïve contact animals, the epidemiological role of H5N1-infected cats in endemically infected areas as a link between wild birds, poultry and humans needs close inspection, and vaccination of cats should be considered to reduce possible human exposure.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Infecções por Orthomyxoviridae/prevenção & controle , Vacinação , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Gatos , Humanos , Esquemas de Imunização , Virus da Influenza A Subtipo H5N1/imunologia , Injeções Subcutâneas , Testes de Neutralização
10.
Avian Pathol ; 36(2): 109-14, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17479370

RESUMO

The avian coronavirus infectious bronchitis virus (IBV) is a major economic pathogen of domestic poultry that, despite vaccination, causes mortality and significant losses in production. During replication of the RNA genome there is a high frequency of mutation and recombination, which has given rise to many strains of IBV and results in the potential for new and emerging strains. Currently the live-attenuated vaccine gives poor cross-strain immunity. Effective antiviral agents may therefore be advantageous in the treatment of IBV. Lithium chloride (LiCl) is a potent inhibitor of the DNA virus herpes simplex virus but not RNA viruses. The effect of LiCl on the replication of IBV was examined in cell culture using two model cell types; Vero cells, an African Green monkey kidney-derived epithelial cell line; and DF-1 cells, an immortalized chicken embryo fibroblast cell line. When treated with a range of LiCl concentrations, IBV RNA and protein levels and viral progeny production were reduced in a dose-dependent manner in both cell types, and the data indicated that inhibition was a cellular rather than a virucidal effect. Host cell protein synthesis still took place in LiCl-treated cells and the level of a standard cellular housekeeping protein remained unchanged, indicating that the effect of LiCl was specifically against IBV.


Assuntos
Vírus da Bronquite Infecciosa/efeitos dos fármacos , Cloreto de Lítio/farmacologia , Animais , Embrião de Galinha , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Regulação Viral da Expressão Gênica/efeitos dos fármacos , RNA Viral/metabolismo , Células Vero , Proteínas Virais/genética , Proteínas Virais/metabolismo
11.
Vaccine ; 25(30): 5558-62, 2007 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-17416443

RESUMO

Infectious bronchitis coronavirus (IBV) is the cause of the single most economically costly infectious disease of domestic fowl in the UK--and probably so in many countries that have a developed poultry industry. A major reason for its continued dominance is its existence as many serotypes, determined by the surface spike protein (S), cross-protection being poor. Although controlled to some degree by live and inactivated vaccines, a new generation of IB vaccines is called for. Reverse genetic or 'infectious clone' systems, which allow the manipulation of the IBV genome, are key to this development. New vaccines would ideally be: genetically stable (i.e. maintain a stable attenuated phenotype); administered in ovo; and be flexible with respect to the source of the spike protein gene. Rational attenuation of IBV requires the identification of genes that are simultaneously not essential for replication and whose absence would reduce pathogenicity. Being able to modify a 'core' vaccine strain to make it applicable to a prevailing serotype requires a procedure for doing so, and the demonstration that 'spike-swapping' is sufficient to induce good immunity. We have demonstrated that four small IBV proteins, encoded by genes 3 and 5, are not essential for replication; failure to produce these proteins had little detrimental affect on the titre of virus produced. Our current molecularly cloned IBV, strain Beaudette, is non-pathogenic, so we do not know what effect the absence of these proteins would have on pathogenicity. That said, plaque size and composition of various gene 3/5 recombinant IBVs in cell culture, and reduced output and ciliostasis in tracheal organ cultures, shows that they are less aggressive than the wild-type Beaudette. Consequently these genes remain targets for rational attenuation. We have recently obtained evidence that one or more of the 15 proteins encoded by gene 1 are also determinants of pathogenicity. Hence gene 1 is also a target for rational attenuation. Replacing the S protein gene of Beaudette with that from the pathogenic M41 strain resulted in a recombinant virus that was still non-pathogenic but which did induce protection against challenge with M41. We have since made other 'spike-swapped' recombinants, including ones with chimaera S genes. Uniquely, our molecular clone of Beaudette is benign when administered to 18-day-old embryos, even at high doses, and induces immunity after this route of vaccination. Taken together, our results point to the creation of a new generation of IB vaccines, based on rational modification of the genome, as being a realisable objective.


Assuntos
Infecções por Coronavirus/imunologia , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/imunologia , Proteínas Virais/genética , Virulência , Animais , Infecções por Coronavirus/prevenção & controle , Vírus da Bronquite Infecciosa/crescimento & desenvolvimento , Vírus da Bronquite Infecciosa/patogenicidade , Aves Domésticas , Proteínas Virais/fisiologia
12.
FEBS Lett ; 581(7): 1275-86, 2007 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-17359980

RESUMO

The positive strand RNA coronavirus, infectious bronchitis virus (IBV), induces a G2/M phase arrest and reduction in the G1 and G1/S phase transition regulator cyclin D1. Quantitative real-time RT-PCR and Western blot analysis demonstrated that cyclin D1 was reduced post-transcriptionally within infected cells independently of the cell-cycle stage at the time of infection. Confocal microscopy revealed that cyclin D1 decreased in IBV-infected cells as infection progressed and inhibition studies indicated that a population of cyclin D1 could be targeted for degradation by a virus mediated pathway. In contrast to the SARS-coronavirus, IBV nucleocapsid protein did not interact with cyclin D1.


Assuntos
Coronavirus , Ciclina D1/análise , Ciclina D1/metabolismo , Vírus da Bronquite Infecciosa , Animais , Western Blotting , Chlorocebus aethiops , Ciclina D1/genética , Regulação para Baixo , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , RNA Viral/análise , RNA Viral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Vero
13.
Vaccine ; 20(19-20): 2454-62, 2002 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-12057600

RESUMO

Myxoma virus, a member of the Poxviridae family (genus Leporipoxvirus) is the agent responsible for myxomatosis in the European rabbit. Recombinant myxoma viruses expressing the capsid gene of an F9 strain of feline calicivirus (FCV) were constructed from an apathogenic, laboratory attenuated, isolate of myxoma virus. The FCV capsid genes were recombined into the myxoma growth factor (MGF) locus of the myxoma genome and expressed from synthetic poxvirus promoters. Myxoma virus is unable to replicate productively in feline cells in vitro, however, cells infected with recombinant viruses do express the heterologous antigens from both late and early/late synthetic promoters. Cats immunised with myxoma-FCV recombinant virus generated high levels of serum neutralising antibody and were protected from disease on subsequent challenge with virulent FCV. Furthermore, there was no evidence of transmission of myxoma-FCV recombinant virus from vaccinated to non-vaccinated cats. These results demonstrate the potential of myxoma virus as a safe vaccine vector for use in non-lepori species and in particular the cat.


Assuntos
Calicivirus Felino/imunologia , Proteínas do Capsídeo/genética , Myxoma virus/genética , Vacinas Virais/administração & dosagem , Animais , Sequência de Bases , Calicivirus Felino/ultraestrutura , Proteínas do Capsídeo/imunologia , Gatos , Linhagem Celular , Células Cultivadas , Primers do DNA , Vetores Genéticos , Microscopia Eletrônica , Coelhos , Recombinação Genética , Vacinas Virais/genética , Eliminação de Partículas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA